
ar
X

iv
:1

00
2.

10
47

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  4

 F
eb

 2
01

0

Photon helicity driven electric currents in graphene
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We report on the observation of photon helicity driven currents in graphene. The directed net
electric current is generated in single layer graphene by circularly polarized terahertz laser radiation
at normal as well as at oblique incidence and changes its sign upon reversing the radiation helicity.
The phenomenological and microscopic theories of the observed photocurrents are developed. We
demonstrate that under oblique incidence the current is caused by the circular photon drag effect
in the interior of graphene sheet. By contrast, the effect at normal incidence stems from the sample
edges, which reduce the symmetry and result in an asymmetric scattering of carriers driven by
the radiation field. Besides a photon helicity dependent current we also observe photocurrents
in response to linearly polarized radiation. The microscopic mechanisms governing this effect are
discussed.

PACS numbers: 73.50.Pz, 72.80.Vp, 81.05.ue, 78.67.Wj

I. INTRODUCTION

Graphene, a one-atom-thick layer of graphite, was ex-
perimentally isolated only six years ago and has since
then revealed fascinating effects in a number of experi-
ments owing to specifics of the electron energy spectrum1.
The chiral motion of charge carriers leads to a pecu-
liar modification of the quantum Hall effect2,3 and plays
an important role in phase-coherent phenomena such as,
e.g., weak localization4,5. The fact that the band struc-
ture resembles the dispersion relation of a massless rel-
ativistic particle has created enormous excitement since
relativistic experiments in a solid state environment be-
came feasible6. Indeed, Klein tunneling7, a relativistic
effect predicted over 80 years ago8, has been experimen-
tally demonstrated very recently in gated graphene struc-
tures9. Another characteristic feature of graphene is the
presence of two valleys, each containing a Dirac cone.
This constitutes a two-state degree of freedom – much
like the electron spin – which was suggested to be ap-
plied in valleytronics10. Most recently several theoretical
groups suggested that the combination of intense radi-
ation and a constant electric field applied to single or
multilayer graphene may result in the generation of a
valley-polarized12,13 and anomalous Hall current11.
Here we demonstrate that the illumination of mono-

layer graphene by radiation of a terahertz (THz) laser in
the absence of any dc field applied to the sample causes
directed electric currents, including those solely driven by
the radiation helicity. Photon helicity driven currents are
well known in semiconductor low-dimensional structures,
and the photocurrent generation has been proven to be a
very efficient method to study non-equilibrium processes
in semiconductors yielding information on their symme-
try, details of the band structure and processes of electron
momentum, spin and energy relaxation, etc.14–17. Micro-
scopic mechanisms of this class of phenomena in quan-
tum wells are based on spin-orbit coupling in gyrotropic
materials14,18,19 or on orbital effects originated from the

quantum interference of optical transitions20–22. Our ex-
periments evidence that the helicity driven photocurrent
in graphene consists of two contributions. One of them
appears at oblique incidence only and is an odd function
of the angle of incidence. The other has its maximum at
normal incidence and is an even function of the incidence
angle. We show that the first effect is caused by the circu-
lar photon drag effect23–26, see also Ref. 27, which stems
from the simultaneous transfer of the linear and angular
momenta of photons to the free carriers in the interior of
the graphene sheet. The second one, however, cannot be
attributed to any photoelectric effect in an ideal honey-
comb lattice of graphene. This two-dimensional lattice
possesses a center of space inversion and does not allow
for an electric current at normal incidence of the radia-
tion. Thus, the appearance of photocurrents at normal
incidence is a clear manifestation of the symmetry reduc-
tion of the system. We suggest that these currents, both
the helicity-sensitive and those generated by linearly po-
larized radiation, also observed in experiment, are caused
by the edges of the real finite-size samples.
This paper is organized as follows. In Sec. II, a short

overview of the experimental technique is given. The ex-
perimental results are summarized in Sec. III. In Sec. IV,
we present a phenomenological description and a micro-
scopic theory of the photon drag effect in graphene. In
Sec. V, we develop a theory of the edge photogalvanic
effect responsible for the observed current at normal in-
cidence of the radiation.

II. EXPERIMENT

The graphene samples were prepared from natural
graphite using the mechanical exfoliation technique1 on
an oxidized silicon wafer. The oxide thickness of 300 nm
allowed to locate graphene flakes in an optical micro-
scope and to assess their thickness. We checked the re-
liability of this method using Raman spectroscopy and
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FIG. 1: Photosignals, U⊥, in a single graphene sheet as a
function of the angle ϕ, which determines the radiation helic-
ity. The data are obtained at room temperature for various
angles of incidence, θ0. The signal is measured nearly perpen-
dicular to the light propagation direction applying radiation
of the cw THz laser with the photon energy 10.5 meV, power
≈ 20 mW and a diameter of the laser spot about 1 mm. The
data for θ0 = ±25◦ are shifted by ±25 nV [sample 1, panel
(a)] and ±50 nV [sample 2, panel (b)], respectively. The hor-
izontal dashed lines show x-axes corresponding to U⊥ = 0 for
the shifted data. Full lines are fits to Eq. (1). We note that
these fits can be obtained from superposition of the photon
drag effect at oblique incidence [see Eqs. (12), (13)] and the
photogalvanic effect at normal incidence [see Eq. (43)]. The
insets show the sample geometry and experimental configura-
tion. The ellipses on top illustrate the states of polarization
for various angles ϕ.

low-temperature quantum Hall measurements on similar
samples28. Typically samples were p-doped by adsorbed
contaminants in the range of n ≤ 2 × 1012 cm−2. The
Fermi energies were EF ≤ 165 meV and the mobilities
at room temperature of the order of 2.5 × 103 cm2/Vs.
The flakes included in this study were all single layer.
After recording the position of the flakes with respect
to predefined markers, we contacted them with electron
beam lithography and thermal evaporation of 60 nm Pd
electrodes. The resistance of graphene measured between
various contacts was in the range of 1 kΩ. Some flakes
were cut into shape using oxygen based reactive ion etch-
ing. Insets in Figs. 1 and 2 show the shapes and the con-
tact geometry of the four investigated samples indicated
by the numbers 1, 2, 3 and 4. The samples were glued
onto holders with conductive epoxy enabling the use of
the highly doped silicon wafer as a back gate. The sam-
ple morphology was characterized by atomic force mi-
croscopy measurements under ambient conditions with
the microscope in intermittent contact mode with stan-
dard silicon tips29.

The photocurrents were generated at room temper-
ature applying THz radiation of an optically pumped
continuous-wave (cw) CH3OH laser16 operating at a
wavelength λ= 118µm (or the corresponding photon en-

   
 

 

FIG. 2: Polarization dependences of the photoresponse ob-
tained at normal incidence of the cw THz laser radiation for
the samples 3 and 4. The two left panels show signals as
a function of the radiation helicity, given by ϕ, and the two
right panels as a function of the electric field orientation given
by azimuthal angle α. Full lines are fits to Eq. (1) [panels (a)
and (c)] and Eq. (2) [panels (b) and (d)]. These fits can be
obtained by the photogalvanic effect at normal incidence [see
Eq. (43)]. The insets show the experimental arrangement and
the samples geometry. The symbols on top of the left and
right panels illustrate the states of polarization for various
angles ϕ and α, respectively.

ergy 10.5 meV) with the power P ≈ 20mW and a di-
ameter of the laser spot of about 1mm. The radiation
was modulated at chopper frequencies in the range from
120 to 600Hz. The sign of the signal is defined as a
relative phase with respect to the lock-in reference signal
frequency, which was kept the same for all measurements.
Additionally we used a high power pulsed NH3 laser op-
erating at λ = 148µm and P ≈ 30 kW 16. The photocur-
rent induced by the cw laser is measured across a 10MΩ
load resistor and recorded with lock-in technique. The
signal magnitudes of Figs. 1-3 are given before amplifica-
tion. The photoresponse to pulsed radiation is measured
across a 50Ω resistor.

The samples were excited both at normal and oblique
incidence. In the case of oblique excitation, the angle θ0
between the light propagation direction and the sample
normal was varied from −25◦ to +25◦. The experimental
geometries are illustrated in the insets in Figs. 1 and 2
for oblique and normal incidence, respectively. In order
to vary the radiation helicity we used a λ/4 plate. The
rotation of the plate resulted in the change of the de-
gree of circular polarization after Pcirc = sin 2ϕ, where
ϕ is the angle between the initial polarization vector of
the laser light E and the c-axis of the plate. The light
polarization states for certain characteristic angles ϕ are
sketched on top of Figs. 1 and 2. In some experiments
we also used linearly polarized radiation. In this case
the plane of polarization of the radiation was rotated by
λ/2 plates. This enabled us to vary the azimuthal an-
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gle α from 0◦ to 180◦ covering all possible orientations
of the electric field vector in the graphene plane. The
relative positions of the light polarization with respect
to the graphene sample edges and contacts are shown on
the top of Fig. 2(b).

III. EXPERIMENTAL RESULTS

Irradiating graphene samples at normal as well as at
oblique incidence we observed photocurrents in all inves-
tigated samples. The signal was detected at room tem-
perature for both low power excitation level of cw laser
and high power pulsed laser. In the latter case the width
of the photocurrent pulses was about 100 ns, which cor-
responds to the THz laser pulse duration. In order to
prove that the signal stems from the graphene flakes and
not, e.g., from the substrate, we removed the graphene
layer from one of the samples and observed that the sig-
nal disappeared.
Figure 1 shows the photoresponse U⊥, which is pro-

portional to the photocurrent j, of two samples 1 and 2
as a function of the angleϕ, assigning the helicity. The
signals are measured at different angles of incidence
θ0 = 0,±25o. While the figure shows the photoresponse
obtained from the pairs of contacts oriented almost per-
pendicular to the light propagation plane, a photocur-
rent has also been observed at any other pair of contacts.
Generally, the helicity dependence of the photocurrent
can be well fitted by

J = A sin 2ϕ+B sin 4ϕ+ C cos 4ϕ+D , (1)

where A, B, C and D are fitting parameters. Such be-
havior, phenomenologically well described by symmetry
arguments (see below), was found in all graphene sam-
ples. The fits to experimental data shown by solid lines
in Fig. 1 demonstrate a good agreement. The first term
on the right hand-side of Eq. (1), which is proportional
to sin 2ϕ and described by the parameter A, changes its
sign upon reversing the photon helicity (marked by ar-
rows). The analysis of the experimental data gives an
evidence that a substantial contribution to the total pho-
tocurrent changes its sign upon switching the radiation
helicity from right- (σ+) to left-handed (σ−) circularly
polarized light, i.e., for the angles ϕ = 45◦ and ϕ = 135◦,
respectively. This is most spectacularly seen in the data
obtained on sample 1, where the changing sign of the cur-
rent is directly detected at normal incidence, θ0 = 0◦

(Fig. 1a). The helicity driven photocurrent gives a sub-
stantial contribution to the photoresponse of two other
samples as demonstrated in Figs. 2(a) and (c) for normal
incidence of radiation.
A deeper insight into the photon-helicity driven pho-

tocurrents is given by their dependences on the inci-
dence angle θ0 presented in Fig. 3 for the samples 1 and
2. We obtained that the photoresponse of the helicity
driven electric current is substantially different for the
geometries, where the photocurrent is measured in the

 

 

  

 

    
 

FIG. 3: Signals due to circularly polarized radiation UCPC =
[U(ϕ = 45◦) − U(ϕ = 135◦)]/2 measured as a function of the
incidence angle θ0 in response to the cw THz laser radiation.
Triangles and full circles show the transversal response, U⊥,
for samples 1 and 2, respectively. Open circles show the signal
obtained in the longitudinal geometry, U‖, for sample 2. The
inset illustrates the experimental configuration.

direction transversal and almost longitudinal to the light
propagation30. While the photocurrent measured in the
longitudinal geometry is almost independent on the angle
of incidence and reflects the signals obtained at normal
incidence, in the transverse geometry it shows a super-
position of two contributions being even and odd in the
incidence angle. An important feature of the latter con-
tribution is that its direction is determined by the light
propagation plane, the radiation helicity and the sign of
θ0, irrespective to the orientation of the sample edges by
contrast to the photocurrents being even functions of the
angle θ0.
Now we turn to the photocurrent contributions pro-

portional to the coefficients B and C in Eq. (1). This
photocurrent, in fact, does not require the radiation he-
licity and reflects the linear polarization component of
the incident radiation. This has been checked in an in-
dependent experiment. By rotating now a λ/2 plate we
varied the relative position between the plane of the ra-
diation polarization and the axes of the samples charac-
terized by the azimuthal angle α. The data are shown in
Figs. 2(b) and (d) and can be well described in agreement
with Eq. (1) by

J = 2B sin 2α+ 2C cos 2α+D − C . (2)

Corresponding fits are plotted by the solid lines in
Figs. 2(b) and (d). Such a behavior of the photocurrent
clearly demonstrates the linear-polarization sensitivity of
the effects. Note that the difference D−C actually con-
stitutes the polarization independent effect, which can
be related to e.g. contacts and is outside of the scope of
the present paper. Studying the dependence of the pho-
tocurrent on the angle of incidence for linearly polarized
excitation we observed that, in contrast to the excitation
with circularly polarized light, the measured photocur-
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rents both in longitudinal and transverse geometries al-
ways result from the superposition of the contribution
weakly dependent on θ0, which stems from normal inci-
dence, and the one being odd in the angle θ0 (not shown).
Moreover, these contributions odd in θ0 are intercon-
nected: While the longitudinal one behaves as cos 2α,
the transverse component is proportional to sin 2α.
To summarize, we observed that both the helicity de-

pendent and helicity independent photocurrents have two
contributions: (i) an even function of the incidence an-
gle θ0, which dominates the signal at normal incidence,
and (ii) a odd in the incidence angle contribution, which
appears at oblique incidence only. Below in Sec. IV we
demonstrate that the contributions to the photocurrent
odd in the angle θ0, both circular and linear, stem from
the interior of graphene and are caused by the photon
drag effect, where the transfer of the momentum of the
photons results in a directed motion of electrons. We
present the phenomenological approach, which is based
on symmetry arguments and is free from details of the
microscopic model, and then the microscopic theory is
put forward. The photoresponse at normal incidence, by
contrast, can not be related with an ideal bulk material.
In Sec. V, we show that these effects are due to the sam-
ple edges and give the corresponding microscopic theory.

IV. THEORY OF PHOTON DRAG

A. Photocurrents as a second-order response to

the electromagnetic fields

In general, the photocurrents under study can be re-
garded as a second-order nonlinear steady-state response

j
(2)
λ (0, 0) = σ

(2)
λνη(ω, q)Eν(q, ω)E

∗
η (q, ω) (3)

to the electric field of a plane electromagnetic wave

E(r, t) = E(q, ω)e−iωt+iqr +E∗(q, ω)eiωt−iqr . (4)

Here E(ω, q) is the complex electric-field amplitude with
the frequency ω and the wave vector q, j(2)(0, 0) is the
photocurrent density, zeros (0, 0) indicate that we con-
sider an electric current averaged in time and space. In
a two-dimensional system the index λ runs only over the
two in-plane coordinates x and y while the indices ν and
η can include the normal coordinate z. The second-order
conductivity σ(2)(ω, q) can be expanded in powers of q,
hereafter we retain only the first two terms

σ
(2)
λνη(ω, q) = σ

(2)
λνη(ω, 0) + Φλµνη(ω)qµ . (5)

The tensor σ
(2)
λνη(ω, 0) requires a lack of the inversion

center in the symmetry point group of the system, it
can conveniently be decomposed into two tensors σ(2,±)

symmetrical and antisymmetrical with respect to the in-

dex interchange ν ↔ η. The symmetrical tensor σ
(2,+)
λνη

describes the linear photogalvanic effect (PGE). The an-

tisymmetric tensor σ
(2,−)
λνη is dual to a pseudotensor γλξ

describing the circular PGE15–17,31. The contributions
described by the fourth-rank tensor Φ are allowed both
in centrosymmetric and noncentrosymmetric media. In a
simplified qualitative picture the linear-q contribution in
Eq. (5) arises due to transfer of momenta from photons
to free carriers and, therefore, is called the photon drag
effect.
The photon-drag current can equivalently be presented

in terms of spatial derivatives of the electric field E(r, ω)
as follows

j
(drag)
λ = Φλµνη(ω) (6)

×
i

2

[

Eν(r, ω)
∂E∗

η(r, ω)

∂xµ

− E∗
η(r, ω)

∂Eν(r, ω)

∂xµ

]

.

For the plane wave (4) the bilinear expression in the
square brackets is independent of r. Equation (6) per-
mits one to make sure that the tensor Φλµνη in Eq. (5)
describes the drag current even in case of the sample di-
mension L being smaller than the light wavelength pro-
vided L by far exceeds the carrier free path length l.
Similarly to the second-harmonic generation linear in

the light wave vector, there are two mechanisms of the
photon drag effect. The linear-q terms can appear in
Eq. (5) either due to the gradient of electric field (qE2-
mechanism) or due to a combined action of the electric
and magnetic field of the electromagnetic wave (EB-
mechanism or the high-frequency Hall effect). In some
sense, these mechanisms are analogues, respectively, of
the magnetic-dipole and electric-quadrupole contribu-
tions to second-harmonic generation described by the dif-
ference j(2)(2ω, 2q)− j(2)(2ω, 0).

B. Phenomenological description of the drag

current in graphene

The ideal honeycomb lattice of graphene is described
by the point group D6h. The group contains the space
inversion and, therefore, allows the photon-drag currents
only because the circular and linear PGE are excluded by
symmetry arguments15. Decomposing the tensor Φλµνη

into symmetrical and antisymmetrical parts concerning
the indices ν and η the drag current can can be written
phenomenologically also as

jλ = Tλµνηqµ
eνe

∗
η + e∗νeη

2
I + T̃λµνqµPcircêνI . (7)

Here I is the light intensity (energy flux through unit
surface) related with the electric field by |E(q, ω)|2 =
(2π/cnω)I, nω is the refractive index at the frequency ω,

Tλµνη =
π

cnω

(Φλµνη +Φλµην) ,

T̃λµξ = −
iπ

2cnω

∑

νη

eξνη(Φλµνη − Φλµην) ,
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eξνη is the unit antisymmetric tensor, j is the current
density, e is the unit polarization vector of the electro-
magnetic wave, ê is the unit vector pointing in the light
propagation direction, Pcirc is circular polarization degree
related to the vectors e and ê by Pcircê = i(e× e∗).
The forth-rank tensor Tλµνη describes the linear pho-

ton drag effect which is insensitive to the sign of circular
polarization and reaches its maximum for linearly polar-
ized light, while the third rank pseudotensor T̃λµν stands
for the circular photon drag current which changes its
sign upon the reversal of photon helicity.
The symmetry analysis shows that, in the D6h point

group, the tensor Tλµνη has four linearly independent
components: T1 = Txxxx + Txxyy, T2 = Txxxx − Txxyy =
2Txyxy, T3 = 2Txzxz and T4 = Txxzz. Then the first term
in the right-hand side of Eq. (7) is reduced to

jx = T1qx
|ex|

2 + |ey|
2

2
I

+ T2

(

qx
|ex|

2 − |ey|
2

2
+ qy

exe
∗
y + e∗xey

2

)

I

+ T3qz
exe

∗
z + e∗xez
2

I + T4qx|ez|
2I , (8a)

jy = T1qy
|ex|

2 + |ey|
2

2
I

+ T2

(

qy
|ey|

2 − |ex|
2

2
+ qx

exe
∗
y + e∗xey

2

)

I

+ T3qz
eye

∗
z + e∗yez

2
I + T4qy|ez|

2I , (8b)

where x and y are the axes in the graphene plane, and z
is the structure normal. Equations (8) clearly show that
the photon drag current can be induced only at oblique
incidence of the radiation and vanishes under normal in-
cidence when both the in-plane component of the photon
wave vector q and the out-of-plane component of the po-
larization vector e are zeros. The photocurrent contains
both the longitudinal component induced in the incidence
plane and determined by the parameters T1, T2, T4 and
the transversal component proportional to T2. The cur-
rent described by the parameter T3 requires z-component
of the photon wave vector.
For an elliptically polarized radiation, in particular, for

circular polarization, the photon drag current in struc-
tures of the D6h symmetry contains additional contribu-
tions proportional to components of the T̃λµξ tensor:

jx = T̃1qyPcircêzI − T̃2qzPcircêyI , (9a)

jy = −T̃1qxPcircêzI + T̃2qzPcircêxI , (9b)

and sensitive to the radiation helicity. Here, T̃1 = T̃xyz

and T̃2 = T̃yzx are linearly independent parameters. Sim-
ilarly to the linear photon drag effect, the circular pho-
tocurrent (9) can be induced at oblique incidence only.

However, in contrast to the former, the circular photocur-
rent always flows perpendicularly to the light incidence
plane.

It follows from very general considerations that, in two-
dimensional systems, the contributions from T3, T4 and
T̃2 are small and unlikely to be observable. Indeed, in
terms of the semiclassical Boltzmann equation the two-
dimensional carriers are unaffected by the normal compo-
nent of the electric field Ez , provided that the graphene
layer is flat, and the terms in Eqs. (8), (9) proportional
to ez, e

∗
z or |ez|

2 vanish. For interband quantum optical
transitions, the photocurrent governed by the component
qz related to the currents ∝ qx,y has a small parameter
ka, where k is the electron wave vector referred to the
band extremum point and a is the well thickness in the
semiconductor quantum wells or the carbon atom radius
in the case of graphene. For intraband indirect optical
absorption involving virtual transtions via other bands
the parameter ka is multiplied by another small parame-
ter ~ω/∆, where ∆ is the energy distance to other bands.
In graphene ∆ is the energy difference between the π and
σ orbitals and has an order of several electronvolts.32

Therefore, in the following we will ignore the T3, T4 and
T̃2 terms in Eqs. (8), (9).

Most studies on photon drag effect have been carried
out in crystals with cubic symmetry33–38, simple metals39

and in atomic gases40,41. In these systems the circular
photon drag is forbidden because the symmetry equal-
izes the coefficients T̃1 and T̃2 in Eq. (9) so that the pho-
tocurrent j becomes proportional to the vector product
q × ê = 0. In systems of uniaxial symmetry, anisotropic
crystals, quantum-well structures, superlattices etc., the
coefficients T̃1 and T̃2 are linearly independent and allow
the circular drag photocurrent. Even more so, this effect
is allowed in graphene where, as mentioned above, the
coefficient T̃2 is negligible. It is worth mentioning that
the appearance of the transverse linear photon drag ef-
fect in the vicinity of the metal surface was discussed in
Refs. 42,43.

Figure 4 schematically illustrates the relative orienta-
tion of all remaining contributions in respect to the light
propagation direction and its polarization state. This
figure being in correspondence to Eq. (9) shows that the
helicity driven photocurrent appears at oblique incidence
only and flows perpendicularly to the light propagation
direction, see Fig. 4(a). Furthermore it changes its sign
upon reversal of the incidence angle. This is in full agree-
ment with the experiment, see Fig. 3, where the odd con-
tribution to the circular photocurrent is indeed observed
for the transverse geometry only. By contrast, the linear
photon drag effect is generated in both longitudinal [see
Fig. 4(b)] and transversal geometries [see Fig. 4(c)] being
also in agreement with the experimental findings.

Also, the polarization dependences given by Eqs. (8),
(9) are observed experimentally. In order to simplify
the comparison with the experiment we rewrite Eqs. (8)
and (9) for the geometry relevant to the experiment with
the light incidence plane being (xz) and the polarization
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FIG. 4: Schematic illustration of the photon drag effects.
Panel (a): circular photon drag effect, where the current
is generated transverse to the light incidence plane (see
Eqs. (9)). Panels (b) and (c): linear photon drag effect. Here
both longitudinal and transverse current can be generated [see
Eqs. (8)].

state of the light described by the angle ϕ for elliptically
polarized light (in particularly, circularly polarized light)
and the angle α for linearly polarized light. In the first
case one obtains

jx(ϕ, θ0) ∝
T1 sin θ0

4
[4 cos2 θ0 + sin2 θ0(1 − cos 4ϕ)]

+
T2 sin θ0

4
[4 cos2 θ0 + (1 + cos2 θ0)(cos 4ϕ− 1)]

jy(ϕ, θ0) ∝ T̃1 sin θ0 cos θ0 sin 2ϕ+
T2

2
sin θ0 cos θ0 sin 4ϕ,

(10)
while in the second case one has

jx(α, θ0) ∝ T1 sin θ0(1− sin2 θ0 cos
2 α)

+T2 sin θ0(cos 2α− cos2 α sin2 θ0)

jy(α, θ0) ∝ sin θ0 cos θ0T2 sin 2α. (11)

For the small incidence angles as in our experiment one
retains only linear in θ0 terms and obtains from Eqs. (10),
(11) the following simplified relations describing the pho-
tocurrent dependences on ϕ:

jx(ϕ, θ0) ∝ T1 sin θ0 +
T2 sin θ0

2
(cos 4ϕ+ 1)

jy(ϕ, θ0) ∝ T̃1 sin θ0 sin 2ϕ+
T2

2
sin θ0 sin 4ϕ, (12)

and α:

jx(α, θ0) ∝ T1 sin θ0 + T2 sin θ0 cos 2α

jy(α, θ0) ∝ sin θ0 cos θ0T2 sin 2α. (13)

The dependence of the experimentally observed pho-
tocurrents odd in the angle incidence on the parameters
α and ϕ characterizing the polarization states of the ra-
diation is in agreement with Eq. (12) and (13). Indeed,
as it is seen from Fig. 1 (also from Fig. 3) the odd in
θ0 contribution to helicity driven photocurrent, ∝ sin 2ϕ,
is observed only in the transversal with respect to the
light incidence plane geometry. By contrast, the contri-
bution to the current odd in the incidence angle, which
was measured in the longitudinal geometry, is described
by cos 4ϕ or cos 2α (not shown) demonstrating the linear
photon drag effect.
It is worth mentioning that the coefficients describing

the linear and circular drag effects have different prop-
erties under time reversal, t → −t. Namely, the circular
polarization sign changes at time reversal while the linear
polarization sign remains. Both the electric current and
the photon wave vector are odd functions with respect
to the replacement t → −t, therefore the constants T̃1

and T̃2 are proportional to an odd number of dissipative
parameters and the constants Ti (i = 1, . . . , 4) to an even
number of dissipative parameters.
The above analysis, which yields a good agreement

with the experiment, was performed using the ideal sym-
metry for the graphene layer characterized by the point
group D6h. The real structures, however, are deposited
on a substrate, which removes the equivalence of the z
and −z directions and reduces the symmetry to the C6v

point group. Our analysis demonstrates that the photon
drag effect does not change qualitatively with the reduc-
tion of symmetry and only the values of the parameters
T1, . . . , T4, T̃1, and T̃2 may change. However, now the
system lacks an inversion center, and photogalvanic ef-
fects become possible. The photogalvanic contributions
to the total electric current are phenomenologically given
by

jλ = χλµν

eµe
∗
ν + e∗µeν

2
I + γλµPcircêµI . (14)

In structures of the C6v point group, non-zero compo-
nents of the tensors χλµν and γλµ describing the lin-
ear and circular photogalvanic effects, respectively, are
χxxz = χyyz and γxy = −γyx. It means that the linear
photogalvanic effect requires a z-component of the elec-
tric field. Moreover, the circular photogalvanic effect also
needs this component because, e.g., êx ∼ i(exe

∗
z − eze

∗
x)

vanishes if the z component of the field is absent. These
requirements result in vanishingly small contribution of
the photogalvanic effects to the total electric current,
similar to the arguments, which exclude photon drag ef-
fect components given by the constants T3, T4 and T̃2.
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To summarize, the analysis of the photocurrents odd-
in θ0 can be reduced to the photon drag effects solely,
and can be applied to the experimental data independent
of the influence of the substrate indicated above for the
symmetry of the graphene flakes.

C. Microscopic theory

Now we turn to the microscopic theory of both lin-
ear and circular photon drag effect. In the following we
focus on the classical regime of interaction between the
radiation and the electron ensemble in graphene which is
realized as soon as ~ω ≪ Ē , where Ē is the characteris-
tic electron energy, the Fermi energy in the degenerate
electron gas or thermal energy kBT for non-degenerate
electrons (kB is the Boltzmann constant). In this case
only intraband transitions are involved. This approach
is similar to the classical consideration of the drag effect
in semiconductors33–37. The theory for the drag effect
in the quantum range of frequencies, ~ω ∼ Ē or higher,
involving both interband and intraband optical transi-
tions is out of scope of this paper and will be presented
elsewhere [44].

1. Qualitative picture

First we present a qualitative microscopic picture of
the drag effect exclusively based on Newton’s second law
of motion

dp

dt
+

p

τ
= eE(r, t) +

e

c
[v ×B(r, t)] , (15)

where e = −|e| is the electron charge, p and v are
the electron momentum and velocity, p/τ is the friction
force due to electron scattering with τ being the scat-
tering time. Assuming for simplicity the propagation of
linearly-polarized radiation along the graphene (grazing
incidence) with in-plane wave vector and electric field
and out-of-plane magnetic field: q ‖ x, E ‖ y, B ‖ z,
as shown in Fig. 5. The generation of a dc current can
be described in the framework of the high-frequency Hall
effect33. It is seen from Fig. 5(a) that during the first half
of the period Tω = 2π/ω of the electro-magnetic field os-
cillation where the both field components Ey and Bz are
positive the electron is exposed to action of the two forces
Fy = eEy and Fx = evyBz like in the Hall effect. In the
absence of friction the phase shift between oscillations of
the velocity vy and the field Bz equals 90◦ and the aver-
age value of Fx vanishes. Allowance for the friction re-
sults in a drift along the x axis. In the second half-period
Tω/2 both fields Ey and Bz simultaneously reverse and
the drift velocity retains its direction. As a result, a non-
vanishing time-averaged drag current is induced in the di-
rection of q. Obviously, the reversal q → −q results in a
change of relative sign of the electric- and magnetic-field
components and, consequently, in the current reversal.

This is the well-known longitudinal linear photon drag
effect. In graphene, as distinct from bulk cubic crystal,
the photon-drag mechanism due to the high-frequency
Hall effect has a characteristic polarization dependence,
see Eqs. (8) for T3 = T4 = 0. Indeed, if the electric field
of the grazing-incidence radiation is rotated around q by
an angle α, then its in-plane component varies ∝ cosα,
the out-of-plane component of the magnetic field Bz be-
haves just as Ey, and the drag current jx ∝ e2y decreases

by cos2 α = (1+cos 2α)/2. The geometry of incidence in
the plane (x, z) at arbitrary oblique angle θ0 is analyzed
in the same way. For the s-polarized light, the considera-
tion is completely the same, a decrease of Bz by a factor
of sin θ0 is automatically reproduced by the correspond-
ing change of qx = |q| sin θ0. For the linear polariza-
tion with the angle α different from integer multiples of
90◦, the both components Ex and Ey are non-zero which
yields a y-component of the drag current proportional to
sin θ0 sin 2α.
For the EB-mechanism, we could ignore the spatial

dependence of the electric and magnetic fields. While
considering the qE2-mechanism we can ignore the mag-
netic field in the right-hand side of Eq. (15) but take into
account the first-order spatial correction and present the
electric field of the linearly polarized light as

E(r, ω) = 2E0[cos (ωt)− 2qxx sin (ωt)] , (16)

whereE0 is the electric field amplitude assumed, without
loss of generality, to be real. At the first step we find the
linear response

p(t) = eτE0‖Re

(

e−iωt

1− iωτ

)

(17)

and the corresponding velocity v(t), where E0‖ is the
in-plane component of the vector E0. At the next
step we calculate the oscillation of the electron position
x(t) =

∫

vx(t)dt. Finally, the function x(t) is substituted
into the second term of Eq. (16) and and then the time-
average of this term is taken. As a result we obtain an
additional contribution ∝ qxE

2
0 to the continuous force

acting on the electron.
The circular photon drag effect23–25 can be described in

a similar way. However, in this case one should take into
account in Eq. (15) not only the Lorentz force or the spa-
tial gradient of the electric field but also the phase shift
by 90 degrees of the two orthogonal oscillating electric-
field components E1 ⊥ E2 ⊥ q. Then one can show that,
since the phase of the oscillation p(t) is retarded in time
by arctan(ωτ) relative to E(t), see Eq. (17), the circu-
larly polarized electromagnetic wave as well induces the
drag current which is perpendicular to q‖. The sign re-
versal of radiation helicity means a change 90◦ → −90◦

of the phase shift between the E1 and E2 components
and a reversal of the circular drag current.
The performed qualitative consideration clearly con-

firms the statement made in Sect. IV.A that the inter-
pretation of photon drag current in study is independent
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FIG. 5: Schematic illustration of the high-frequency Hall ef-
fect resulting in the photon drag effect.

of the relation between the sample linear in-plane dimen-
sion, L, and the light wave length λ but requires but re-
quires a small ratio l/L, where l is the mean free path
length vτ , as well as a small product ql.

2. Boltzmann equation treatment

We develop a microscopic kinetic theory of the photon
drag effect for the simplest model of the graphene band
structure. We consider only the conduction and valence
band states in the K and K ′ valleys formed from the
π-orbitals of carbon atoms. In each valley, the effective
Hamiltonian is a 2×2 matrix

H = ~v(k · σ) , (18)

which describes both the conduction and valence bands
of a graphene layer. Here v is the electron speed in
graphene, k = (kx, ky) is the two-dimensional wave
vector referred to the Dirac point, σ is a matrix two-
dimensional vector with components σx and σy being the
Pauli matrices in the pseudospin space.
In accordance with the definition (4) the electric and

magnetic fields of the incident wave are taken in the form

E = E0e
i(qr−ωt) + c.c. , B = B0e

i(qr−ωt) + c.c. , (19)

where E0 and B0 are the complex amplitudes which are
orthogonal to each other and to the wave vector q. In
the case of a linearly polarized light the vectors q,E
and B form a right-hand triple. It is worth noting that
the electric and magnetic fields acting on an electron in
graphene lying on a substrate are different from those
of an incident wave owing to the presence of substrate.

To be specific, let us assume that (xz) is the radiation

incidence plane. Therefore, E0,y = E
(i)
0,y(1 + rs) and

E0,x = E
(i)
0,x(1 + rp), where the superscript (i) denotes

the incident waves and rs, rp are the amplitude reflec-
tion coefficients in the s and p polarizations, respectively.
Similar relation holds for the z-component of the mag-

netic field, B0,z = B
(i)
0,z(1 + rs). We expect that the

metallic contacts attached to our small samples cause an
inessential distortion of the plane-wave character of the
electromagnetic field.
Following Ref. 34 the kinetic equation for the electron

distribution function f(k, r, t) in a given valley reads

∂f

∂t
+ v

∂f

∂r
+

e

~

(

E +
1

c
[v ×B]

)

∂f

∂k
= Q{f} . (20)

Here c is the light speed in vacuum, v = vk is the electron
velocity in the state with the wave vector k,

vk =
1

~

∂εk
∂k

= v
k

|k|
, (21)

εk = v~k is the electron dispersion, and Q{f} is the
collision integral.
The drag current is proportional to the light intensity

and, therefore, appears in the second order in the elec-
tromagnetic fields. Correspondingly, we solve Eq. (20)
by iterations with respect to the electric and magnetic
fields and represent the electron distribution function as

f(k, r, t) = f0(εk) (22)

+
[

f1(k)e
i(qr−ωt) + c.c.

]

+ f2(k) + . . . ,

where f0(εk) is the equilibrium distribution function,
f1(k) describes the linear response to the fields, f2(k)
is a homogeneous time-independent correction which ap-
pears in the second order in E,B, and the omitted terms
(. . .) describe other contributions including those oscillat-
ing with a double frequency and terms of the higher order
in E,B. The direct current caused by the photon drag
effect is given by

j = 4e
∑

k

vkf2(k) , (23)

where the factor 4 accounts for the spin and valley de-
generacy.
The first-order correction f1(k) can be found by solv-

ing the linearized Eq. (20) with the result

f1(k) = −
eτ1E0f

′
0

1− iωτ1

×

[

(ev)− iτ2
(qv)(ev) − v2(qe)/2

1− iωτ2
+

(qe)v2

2ω

]

. (24)

Here, f ′
0 = df0/dεk, τ1 is the momentum relaxation time

(more precisely, relaxation time of the first angular har-
monic of the distribution function) and τ2 is the relax-
ation time of the second angular harmonic. While deriv-
ing Eq. (24), we took into account that τ2|q|v, |q|v/ω ≪
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FIG. 6: Theoretical frequency dependences of (a) the circular
photon-drag current, jc⊥, and (b) the linear photon-drag cur-
rents, both longitudinal (jl‖) and transversal (jl⊥), induced in
bulk graphene sheet at oblique incidence and calculated after
Eq. (26), (27). The drag current is given in arbitrary units
and the frequency is presented in the dimensionless form as
ωτ1, where τ1 is the momentum relaxation time.

1, in which case the second and third terms in the square
brackets are small corrections to the first one. More-
over, the energy relaxation time τε (relaxation time for
the zeroth angular harmonics of the nonequilibrium dis-
tribution function) was assumed to be much longer than
all other time scales in the system, namely, τ1, τ2, 1/ω.
The latter assumption allows us to neglect corrections
to the distribution function related to energy relaxation
processes and allow for this relaxation time to be infi-
nite34. In this connection we note that the first term in
Eq. (24) contains the first-order angular harmonics of the
wave vector, the second term contains the second-order
harmonics while the third term is angle independent.
The second-order correction f2(k) averaged in time

and space is found from the equation

2e

~
Re

{(

E0 +
1

c
[v ×B0]

)

∂f∗
1

∂k

}

= Q{f2}, (25)

where the asterisk denotes the complex conjugation.
There are two contributions to f2(k) related to the above-
mentioned EB- and qE2-mechanisms: the first arises
from a product of the Lorentz force and the main term
in Eq. (24), and the second results from a product of the
electric-field force and the q-dependent terms in Eq. (24).
Substituting the solution of Eq. (25) into Eq. (23) we

arrive at the following expressions

T1 = −
4πe3v4

ωc

∑

k

τ1f
′
0

1 + ω2τ21
×

[

2

(

dτ1
dεk

+
τ1
εk

)

−
1− ω2τ1τ2
1 + ω2τ22

(

dτ1
dεk

−
τ1
εk

)]

, (26a)

T2 = −
4πe3v4

ωc

∑

k

τ1f
′
0

1 + ω2τ21

(

dτ1
dεk

−
τ1
εk

)

(26b)

for the constants T1 and T2 describing the linear photon-
drag current in the phenomenological equations (8). It is
worth noting that in the low frequency limit, ωτ1, ωτ2 ≪
1, the coefficients T1, T2 tend to infinity as ω−1. However
the drag current has a finite limit at ω → 0 since it is
proportional to qT1,2 and q ∝ ω. It should also be pointed
out that, according to the definition (19), the static fields
E and B differ by factors of 2 from the amplitudes E0

and B0 of the corresponding fields taken at ω → 0 and,
therefore, the constant relating the current at ω → 0 with
the squared amplitude E2

0 and the constant relating the
static Hall current with the product of static fields E and
B differ by a factor of 4.
In the same way we derive the constant T̃1 describing

in Eqs. (9) the circular photon-drag effect

T̃1 =
2πe3v4

c

∑

k

τ21 (1 + τ2/τ1)f
′
0

[1 + (ωτ1)2][1 + (ωτ2)2]

(

dτ1
dεk

−
τ1
εk

)

.

(27)
It is finite at ω → 0 which means the vanishing of the
circular photocurrent in the static-field limit as expected
because, for static fields, ellipticity is forbidden.
The time inversion symmetry imposes the certain re-

strictions on the coefficients in Eqs. (8) and (9): micro-

scopic expressions for Tj (j = 1...4) and T̃j (j = 1, 2)
must be proportional, respectively, to even and odd num-
ber of dissipative constants, in our case the relaxation
times τ1, τ2 or the inverse times τ−1

1 , τ−1
2 . One can see

that Eqs. (26) and (27) for the linear and circular drag
effects satisfy these general rules.
Thus, we have derived microscopic expressions for the

phenomenological constants in Eqs. (8a), (8b), Eqs. (9a)
and (9b) which, as we addressed above, describe well all
experimental findings. The developed microscopic theory
yields all allowed contributions to the photon drag effect
in the model where only π-orbitals of carbon atoms are
taken into account.
Figure 6 shows calculated frequency dependences of

the photocurrent. In the calculation we assume that the
electron scattering in graphene is short-range, in which
case one has τ1 = 2τ2 ∝ ε−1

k . It is seen that at small fre-
quencies, ω → 0, the circular photon drag effect vanishes
and the linear photocurrent reaches its maximum values.
The absolute value of jc has a maximum at ωτ1 ≈ 0.8 and
decreases as ω−4 at high frequencies, ωτ1, ωτ2 ≫ 1. The
linear photon-drag current exhibits a decrease at high-
frequency ∝ ω−3.
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FIG. 7: Schematic illustration of the edge current generation
in a sample of finite size.

Finally, we note that together with electrons in the
conduction band, holes in the valence band also con-
tribute to the photocurrent. The hole contribution to the
current is obtained from Eqs. (26), (27) by the replace-
ment e → −e and the equilibrium electron distribution

function f0 by the hole distribution f
(hole)
0 .

V. EDGE PHOTOCURRENTS

Here we develop a theory of the photocurrent genera-
tion in graphene at normal incidence. In bulk graphene
sheets of the D6h or C6v symmetry arguments the effect
is forbidden. In order to explain its appearance in exper-
iment, we need to take into account the graphene edges
which locally reduce the symmetry45.

A. Model

The existence of edge currents induced both by linearly
or circularly polarized radiation can be understood in the
framework of the model depicted in Fig. 7. We will show

that the current can be generated along the sample edge
in a narrow channel of the width comparable to the mean
free path l. Then, if the opposite sample edges, in the
following the left and right edges, are non-equivalent, the
edge currents do not compensate each other resulting in a
non-zero net electric current. Otherwise, currents flowing
along the opposite edges are oppositely directed and have
the same absolute values. In the simplest model of the
edge inequivalence, the electrons are specularly reflected
from the right edge of the sample and diffusively scat-
tered by the left one, as illustrated in Fig. 7. In a more
general model, we can separate the edge reflectivity into
two parts, specular Rsp and diffuse Rdif , satisfying the
identity Rsp +Rdif = 1. In this model the net current is
proportional to the difference Rdif,L − Rdif,R of the left-
and right-edge diffusivenesses. For distinctness, we con-
sider the current generation near the sample left edge and
refer to Fig. 7. An important point to bear in mind is
that an electron traveling in the l-thick stripe adjacent to
the edge randomly changes its direction of motion along
the y axis not only in the bulk scattering processes de-
scribed by the relaxation time τ1 but also in the diffusive
reflection at the edge. Thus, its total scattering rate is a
sum of two terms,

1

τtot
=

1

τ
+Rdif,L

|vx|

d
Θ(−vx) , (28)

where d is the distance from the electron to the left edge,
see Fig. 7, and Θ(v) is the Heaviside function. The
factor Θ(−vx) ensures that the additional contribution
to τ−1

tot exists only for the carrier moving towards the
edge. The dependence of the scattering time τtot on the
velocity direction is plotted in Fig. 7(b).
The x-component of electric field results in the oscil-

lating correction to the electron velocity x-component:

vx = v0x + δvx, (29)

where

δvx ∼
eτExv

(1 − iωτ)p
e−iωt + c.c., (30)

where p is the electron momentum corresponding to its
mean kinetic energy. The modulation of the velocity re-
sults in the modulation of the scattering time τ in agree-
ment with Eq. (28), since electron reaches the bound-
ary faster of slower depending on the value of eEx, see
Fig. 7(b).
The dc current along the edge is generated by y com-

ponent of the field and, according to Drude theory, is
proportional to the time-averaged product of Eyτtot:

Jy ∼ e2Nl
v

p
Re{E∗

yδτ}. (31)

Here N is the electron concentration, Nl is the electron
density per unit length in the vicinity of the edge, overline
means the averaging over time,

δτ = τtot − τ ∼ Θ(vx)
δvx
l

τ2. (32)
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is the oscillating correction to the scattering time, and,
for simplicity, we assumed that Rdiff,L ∼ 1. The value
and direction of the dc current is controlled by the rel-
ative phase of the Ey and τtot, or accordingly vx oscil-
lations. At ωτ ≪ 1 the oscillations of Ex and vx are
in phase (no retardation) and the dc current appears at
linear polarization of incident radiation where Ex and
Ey components oscillate in phase. With an increase of
ωτ the retardation effect comes into play and, in ad-
dition to the linear photocurrent, a helicity dependent
response appears: the oscillations of τtot appear to be
phase-shifted with respect to the oscillations of Ex and
for the circularly polarized wave where Ex and Ey are
π/2 phase-shifted the dc current is generated. Taking
the average one can find that

LPGE: J lin
y ∼

e3v2

p2
(ExE

∗
y + EyE

∗
x)τ

3N, (33)

CPGE: Jcirc
y ∼ ωτ

e3v2

p2
i(ExE

∗
y − EyE

∗
x)τ

3N, (34)

at ωτ ≪ 1.46 Superposition of these two current contribu-
tion yields polarization dependence of the photocurrent
observed in experiment. Indeed, in the experimental ge-
ometry, where elliptically polarized radiation is obtained
by rotation of the λ/4 plate, polarization determined
terms reduces to ExE

∗
y +EyE

∗
x = B sin(4ϕ) +C cos(4ϕ)

and i(ExE
∗
y − EyE

∗
x) = A sin 2ϕ being in agreement

with experimental findings (see Fig. 1 and 2). Also
in the set-up, where linear polarization is rotated by
the angle α, we obtain from Eq. (33) ExE

∗
y + EyE

∗
x =

2B sin(2α) + 2C cos(2α) which also agrees with experi-
ment (see Fig. 2).
As we mentioned above, different edges of the sample

make different contributions to the photocurrents. Con-
sider the square-shaped sample and assume that all the
sample edges scatter electrons diffusively. Obviously, the
currents flowing along the opposite edges of the sample
should have opposite directions. The current topology
depends on the radiation polarization state. In accor-
dance with our model, the helicity driven current should
wind in the same direction, clock-wise or counter-clock-
wise depending on the radiation helicity, for all the sam-
ple edges since the helicity, i(ExE

∗
y −EyE

∗
x) is preserved

at the rotation by 90o. Hence, the distribution of helic-
ity driven current should form a vertex, whose winding
direction changes with the change of light helicity. How-
ever, it is not the case for the photocurrent caused by
linearly polarized light and described by the combination
ExE

∗
y +EyE

∗
x. The latter changes its sign at the 90o ro-

tation, hence, the linear photocurrents flow towards (or
outwards) the same corner for adjacent edges.

B. Microscopic theory

The microscopic theory of this effect is developed in
the framework of kinetic equations for the classical fre-

quency range. The equation for the distribution function
f(k, x, t) of electrons in the conduction band in a semi-
infinite sample (x ≥ 0) has the form

∂f

∂t
+ vx

∂f

∂x
+

eE(t)

~

∂f

∂k
= Q{f} , (35)

where E(t) = E0e
−iωt + E∗

0e
+iωt is the electric field of

the radiation, which is assumed uniform in the graphene
plane in the geometry of normal incidence. The distri-
bution function can be expanded in series in the electric
field as follows

f(k, x, t) = f0(εk) + [f1(k, x)e
−iωt +c.c.] + f2(k, x) + ... ,

(36)
where f0(εk) is the equilibrium distribution function,
f1 ∝ |E|, and f2 ∝ |E|2. The directed electric current
along the structure edge is then given by

Jy = 4e

∫ ∞

0

dx
∑

k

f2(k, x)vy . (37)

Here, the factor 4 accounts for the spin and valley degen-
eracy.
As a model, we consider the simplest form of collision

integral,

Q{f(k, x, t)} = −
f(k, x, t)− f0(εk)

τ
, (38)

and assume the diffusive elastic scattering of carriers at
the edge, which implies that f(k, 0, t) is independent of
the direction of k for vx > 0 and

∫

f(k, 0, t)vx dϕk = 0.
To first order in the electric field, solution of Eq. (35)

with the above boundary conditions has the form

f1(k, x) = −
eτf ′

0

1− iωτ
[E0 · v

−
(

E0 · v +
π

4
E0,xv

)

exp

(

−
1− iωτ

vxτ
x

)

Θ(vx)

]

, (39)

where f ′
0 = df0(ε)/dε and Θ(vx) is the step function equal

to 1 and 0 for vx > 0 and vx < 0, respectively.
The equation for the second-order correction f2(k, x)

to the distribution function, which gives rise to dc electric
current, assumes the form

vx
∂f2(k, x)

∂x
+

2e

~
Re

[

E∗
0

∂f1(k, x)

∂k

]

= −
f2(k, x)

τ
, (40)

which yields

∫ ∞

0

f2(k, x)dx = vxτ [f2(k, 0)− f2(k,∞)]

−
2eτ

~

∫ ∞

0

Re

[

E∗
0

f1(k, x)

dk

]

dx . (41)

By using Eqs. (37) and (41) we derive for the edge electric
current

Jy = −8
e3τ3

~

∑

k

Re

{

vxvyE
∗
0

1− iωτ

d[(E0 · v)f
′
0]

dk
(42)
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+
vyE

∗
0

(1− iωτ)2
d

dk

[

(E0 · v +
π

4
E0,xv)f

′
0 vx

]

}

Θ(vx) ,

where the above two contributions to the current stem
from the first and second terms on the right-hand side of
Eq. (41), respectively.
In graphene, the electron kinetic energy and velocity

are given by εk = ~v|k| and v = v k/k, respectively.
Therefore, we obtain for the edge photocurrent contribu-
tion from the electrons

Jy = −
e3τ3v2f0(0)

2π~2[1 + (ωτ)2]

[(

1 +
7

6

1− (ωτ)2

1 + (ωτ)2

)

×(E0,xE
∗
0,y + E0,yE

∗
0,x) +

10

3

ωτ

1 + (ωτ)2
i[E0 ×E∗

0 ]z

]

.

(43)

Similarly to the case of the photon drag effect the va-
lence band holes contribution to the photocurrent can be
obtained from Eq. (43) by the replacement e → −e and

f0(0) → f
(hole)
0 (0) = [1 − f0(0)]. Taking into account

both electron and hole currents we obtain that the total
electric current emerging at the sample edge is given by
Eq. (43), where f0(0) should be replaced by [2f0(0)− 1].
The dependences of the edge photocurrent (43) on the

angles ϕ and α are given by

Jy(ϕ) ∝
Cl

2
sin 4ϕ+ Cc sin 2ϕ, (44)

Jy(α) ∝ Cl sin 2α. (45)

The microscopic theory for the edge photocurrents is in
a good agreement with experimental results. At nor-
mal incidence the observed photoresponse is, according to
Eq. (44), a sum of the contributions proportional to func-
tion sin 2ϕ and B sin (4ϕ)+C cos (4ϕ) ∝ sin (4ϕ+ ξ), see
Fig. 2(a). The additional phase ξ in experimental depen-
dences results from the arbitrary orientation of the sam-
ple edges. Moreover, the dependence of the experimental
data of the azimuthal angle α, Fig. 2(b), demonstrates
sin 2α and cos 2α behavior in agreement with Eq. (45).
Hence, helicity driven and linear polarization dependent
photocurrents in graphene are well described at the nor-
mal incidence by our model of edge effects.

VI. SUMMARY

To summarize, our observations clearly demonstrate
that the irradiation of monolayer graphene flakes results
in directed electric currents of different origins. In all
our measurements a substantial contribution to the pho-
tocurrent is driven by the photon helicity. It can be sep-
arated into the contribution resulting from normal in-
cidence and the one from oblique incidence. While the
contribution from oblique incidence is related to the bulk
material and results from the transfer of the photon an-
gular and linear momentum to free carriers, the effect
at normal incidence is caused by the sample edges and
vanishes in the bulk material. Our theory describes the
helicity driven as well as the linear-polarization driven
photocurrents in the classical limit where the radiation
frequency is smaller compared to the characteristic en-
ergy of the carriers. The treatment of the general case,
where interband transitions should be taken into account,
is a future task.

Note added. At the day of the submission of this
manuscript, Entin et al. have published a pre-print49

devoted to the theory of the linear photon drag effect
in graphene. Unlike in Ref. 49, where the direct inter-
band absorption of linearly polarized light is considered,
here we present results of mutual experimental and the-
oretical studies of the photon drag effect in graphene un-
der indirect intrasubband optical transitions for both lin-
ear and circular polarizations, with emphasis on helicity-
dependent photocurrents.
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